• Jespersen Kyed posted an update 3 days, 13 hours ago

    s discontinued during the first trimester and re-administered after that. Mean first menarche age (±SD) was 13.6 ± 0.7 years. Thirteen out of 15 women were menopausal, mean menopausal age (± SD) 466 ± 2.6 years.

    Most of GD women experience uncomplicated pregnancies and deliver normal, healthy infants, although the rate of complications and the rate of abortions is high in this population.

    Most of GD women experience uncomplicated pregnancies and deliver normal, healthy infants, although the rate of complications and the rate of abortions is high in this population.Three carbamidocyclophanes, A, F and V, and carbamidocylindrofridin A were isolated from the cultured freshwater cyanobacterium Cylindrospermum stagnale, collected in the Canary Islands. The chemical structures of these compounds were elucidated through NMR, HRMS and ECD spectroscopy. The absolute configuration of carbamidocyclophane A was confirmed using X-ray-diffraction. All compounds showed apoptotic capacity against the SK-MEL-1, SK-MEL-28 and SK-MEL-31 tumour cells. Carbamidocylindrofridin A had the highest anti-tumour potential, with an IC50 of 1 ± 0.3 μM in the SK-MEL-1 cell line.

    The widespread maternal endothelial dysfunction that underlies the manifestations of preeclampsia is thought to arise from excessive placental production of antiangiogenic factors and enhanced oxidative stress. Therefore, we assessed whether the natural antioxidant sulforaphane could improve vascular function.

    Cell viability of human umbilical vein endothelial cells (HUVECs) was assessed after 24 or 48h in normoxia (20% O

    ) or hypoxia (1% O

    ) with or without sulforaphane. To model vascular dysfunction associated with preeclampsia, mouse mesenteric arteries were incubated in trophoblast conditioned media (TCM), and human omental arteries incubated in preeclamptic explant media (PEM) with or without sulforaphane. Both media are rich in antiangiogenic compounds associated with preeclampsia. TCM was generated from primary cytotrophoblast cells from term placentae of normotensive, while PEM was generated from explants from preeclamptic women. Reactivity was assessed by wire myography. sulforaphane’s actions o contribute to the preeclampsia.Antifouling paint particles (APPs) and associated metals have been identified in sediments around boatyards and marinas globally, but the effects of APPs on benthic organisms are largely unknown. Sub-lethal endpoints were measured following laboratory exposures of the harbour ragworm (Hediste diversicolor) and the common cockle (Cerastoderma edule) to environmentally relevant concentrations of biocidal (‘modern’ and ‘historic’) and biocide-free (‘silicone’) APPs added to clean estuarine sediment. Further, the 5-day median lethal concentrations (LC50) and effects concentrations (EC50) for modern biocidal APPs were calculated. For ragworms, significant decreases in weight (15.7%; p less then 0.01) and feeding rate (10.2%; p less then 0.05) were observed in the modern biocidal treatment; burrowing behaviour was also reduced by 29% in this treatment, but was not significant. For cockles, the modern biocidal treatment led to 100% mortality of all replicates before endpoints were measured. In cockles, there was elevated levels of metallothionein-like protein (MTLP) in response to both modern and historic biocidal treatments. Ragworms had a higher tolerance to modern APPs (5-day LC5019.9 APP g L-1; EC50 14.6 g L-1) compared to cockles (5-day LC50 2.3 g L-1 and EC50 1.4 g L-1). The results of this study indicate that modern biocidal APPs, containing high Cu concentrations, have the potential to adversely affect the health of benthic organisms at environmentally relevant concentrations. The findings highlight the need for stricter regulations on the disposal of APP waste originating from boatyards, marinas and abandoned boats.Cannabinoids are a group of organic compounds found in cannabis. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two major constituents of cannabinoids, and their metabolites are contaminants of emerging concern due to the limited information on their environmental impacts. 3-TYP As well, their releases to the water systems and environment are expected to increase due to recent legalization. Solid-phase extraction is the most common technique for the extraction and pre-concentration of cannabinoids in water samples as well as a clean-up step after the extraction of cannabinoids from solid samples. Liquid chromatography coupled with mass spectrometry is the most common technique used for the analysis of cannabinoids. THC and its metabolites have been detected in wastewater, surface water, and drinking water. In particular, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) has been detected at concentrations up to 2590 and 169 ng L-1 in untreated and treated wastewater, respectively, 79.9 ng L-1 in surface health.Mammalian polychlorinated biphenyl (PCB) metabolism has not been systematically explored with nontarget high-resolution mass spectrometry (Nt-HRMS). Here we investigated the importance of the gut microbiome in PCB biotransformation by Nt-HRMS analysis of feces from conventional (CV) and germ-free (GF) adult female mice exposed to a single oral dose of an environmental PCB mixture (6 mg/kg or 30 mg/kg in corn oil). Feces were collected for 24 h after PCB administration, PCB metabolites were extracted from pooled samples, and the extracts were analyzed by Nt-HRMS. Twelve classes of PCB metabolites were detected in the feces from CV mice, including PCB sulfates, hydroxylated PCB sulfates (OH-PCB sulfates), PCB sulfonates, and hydroxylated methyl sulfone PCBs (OH-MeSO2-PCBs) reported previously. We also observed eight additional PCB metabolite classes that were tentatively identified as hydroxylated PCBs (OH-PCBs), dihydroxylated PCBs (DiOH-PCBs), monomethoxylated dihydroxylated PCBs (MeO-OH-PCBs), methoxylated PCB sulfates (MeO-PCB sulfates), mono-to tetra-hydroxylated PCB quinones ((OH)x-quinones, x = 1-4), and hydroxylated polychlorinated benzofurans (OH-PCDF). Most metabolite classes were also detected in the feces from GF mice, except for MeO-OH-PCBs, OH-MeSO2-PCBs, and OH-PCDFs. Semi-quantitative analyses demonstrate that relative PCB metabolite levels increased with increasing dose and were higher in CV than GF mice, except for PCB sulfates and MeO-PCB sulfates, which were higher in GF mice. These findings demonstrate that the gut microbiome plays a direct or indirect role in the absorption, distribution, metabolism, or excretion of PCB metabolites, which in turn may affect toxic outcomes following PCB exposure.