• Levine Schou posted an update 3 days, 12 hours ago

    This paper presents a dataset for Wi-Fi-based human-to-human interaction recognition that comprises twelve different interactions performed by 40 different pairs of subjects in an indoor environment. Each pair of subjects performed ten trials of each of the twelve interactions and the total number of trials recorded in our dataset for all the 40 pairs of subjects is 4800 trials (i.e., 40 pairs of subjects × 12 interactions × 10 trials). selleck inhibitor The publicly available CSI tool [1] is used to record the Wi-Fi signals transmitted from a commercial off-the-shelf access point, namely the Sagemcom 2704 access point, to a desktop computer that is equipped with an Intel 5300 network interface card. The recorded Wi-Fi signals consist of the Received Signal Strength Indicator (RSSI) values and the Channel State Information (CSI) values. Unlike the publicly available Wi-Fi-based human activity datasets, which mainly have focused on activities performed by a single human, our dataset provides a collection of Wi-Fi signals that are recorded for 40 different pairs of subjects while performing twelve two-person interactions. The presented dataset can be exploited to advance Wi-Fi-based human activity recognition in different aspects, such as the use of various machine learning algorithms to recognize different human-to-human interactions.This article presents the statistical analysis data from Drosophila melanogaster development (from larvae to adult) and learning and memory retention behavior of a Pavlovian conditioning in male and female flies exposed to copper. While the full data sets are available In the article Copper decrease associative learning and memory in D. melanogaster, this data-in-brief article includes the detailed statistical analysis performed. Data demonstrates Statistica Software analysis between the subject part of the analysis 2 treatments x 2 sexes x 2 ages and within subject part of the analysis 2 treatments x 2 sex x 2 ages x 4 times, repeated measures.Introduction Tumourigenesis attributed to residual undifferentiated cells in a graft is considered to be a significant issue in cell therapy using human pluripotent stem cells. To ensure the safety of regenerative medicine derived from pluripotent stem cells, residual undifferentiated cells must be eliminated in the manufacturing process. We previously described the lectin probe rBC2LCN, which binds harmlessly and specifically to the cell surface of human pluripotent stem cells. We report here a technique using rBC2LCN to remove pluripotent cells from a heterogenous population to reduce the chance of teratoma formation. Methods We demonstrate a method for separating residual tumourigenic cells using rBC2LCN-bound magnetic beads. This technology is a novel use of their previous discovery that rBC2LCN is a lectin that selectively binds to pluripotent cells. We optimize and validate a method to remove hPSCs from a mixture with human fibroblasts using rBC2LCN-conjugated magnetic beads. Results Cells with the potential to form teratoma could be effectively eliminated from a heterogeneous cell population with biotin-labelled rBC2LCN and streptavidin-bound magnetic beads. The efficiency was measured by FACS, ddPCR, and animal transplantation, suggesting that magnetic cell separation using rBC2LCN is quite efficient for eliminating hPSCs from mixed cell populations. Conclusions The removal of residual tumourigenic cells based on rBC2LCN could be a practical option for laboratory use and industrialisation of regenerative medicine using human pluripotent stem cells.Introduction Vascular endothelial cell disorders are closely related to cardiovascular disease (CVD) and pulmonary diseases. Abnormal lipid metabolism in the endothelium leads to changes in cell signalling, and the expression of genes related to immunity and inflammation. It is therefore important to investigate the pathophysiology of vascular endothelial disorders in terms of lipid metabolism, using a disease model of endothelium. Methods Human induced pluripotent stem cell-derived endothelial cells (iECs) were cultured on a matrigel to form an iEC network. Lipids in the iEC network were investigated by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) analysis. Ion fragments obtained by mass spectrometry were analysed using an infusion method, involving precursor ion scanning with fragment ion. Results The MALDI TOF IMS analysis revealed co-localized intensity of peaks at m/z 592.1 and 593.1 in the iEC network. Tandem mass spectrometry (MS/MS) analysis by MALDI-imaging, in conjunction with precursor ion scanning using an infusion method with lipid extracts, identified that these precursor ions were lysophosphatidylcholine (LPC) (225) and its isotype. Conclusion The MALDI-imaging analysis showed that LPC (225) was abundant in an iEC network. As an in vitro test model for disease and potential therapy, present analysis methods using MALDI-imaging combined with, for example, mesenchymal stem cells (MSC) to a disease derived iEC network may be useful in revealing the changes in the amount and distribution of lipids under various stimuli.Introduction Currently, various kinds of materials are used for the treatment of bone defects. In general, these materials have a problem of formativeness. The three -dimensional (3D) printing technique has been introduced to fabricate artificial bone with arbitrary shapes, but poor bone replacement is still problematic.Our group has created a β⁻tricalcium phosphate (β⁻TCP) scaffold by applying 3D printing technology. This scaffold has an arbitrary shape and an internal structure suitable for cell loading, growth, and colonization. The scaffold was coated with a recombinant collagen peptide (RCP) to promote bone replacement.As indicated by several studies, cells loaded to scaffolds promote bone regeneration, especially when they are induced osteoblastic differentiation before transplantation. In this study, culture duration for bone marrow cells was optimized before being loaded to this new scaffold material. Method Bone marrow cells isolated from C57BL/6J mice were subjected to osteogenic culture for 4, 7, and 14 days.