-
Burks Hooper posted an update 4 days, 3 hours ago
MicroRNA-target networks are often dysregulated in diseases. Our purpose is to investigate this dysregulation of polycystic ovary syndrome (PCOS). Through the bioinformatics reanalysis of the public RNAseq dataset, we found that miR-188-3p was the miRNA with the highest induction rate, and indicated that miR-188-3p might have a rare function of upregulating its targeted expression. This discovery will increase our understanding of the pathology of PCOS and provide new targets for treatment strategies.Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that primarily affects motor neurons, causing muscle atrophy, bulbar palsy, and pyramidal tract signs. However, the aetiology and pathogenesis of ALS have not been elucidated to date. In this study, a competitive endogenous RNA (ceRNA) network was constructed by analyzing the expression profiles of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) that were matched by 7 ALS samples and 4 control samples, and then a protein-protein interaction (PPI) network was constructed to identify the genes related to ALS. Gene Ontology (GO) was used to study the potential functions of differentially expressed mRNAs (DEmRNAs) in the ceRNA network. For the ALS and control groups, 247177 potential lncRNA-mRNA ceRNA relationship pairs were screened. Analysis of significant relationship pairs demonstrated that the PPI modules formed by the MALAT1-regulated SYNRG, ITSN2, PICALM, AP3B1, and AAK1 genes may play important roles in the pathogenesis of ALS, and these results may help to characterize the pathogenesis of ALS.Traumatic brain injury (TBI) is a major cause of morbidity and mortality, both in adult and pediatric populations. However, the dynamic changes of gene expression profiles following TBI have not been fully understood. In this study, we identified the differentially expressed genes (DEGs) following TBI. Remarkably, Serpina3n, Asf1b, Folr1, LOC100366216, Clec12a, Olr1, Timp1, Hspb1, Lcn2, and Spp1 were identified as the top 10 with the highest statistical significance. The weighted gene coexpression analysis (WGCNA) identified 12 functional modules from the DEGs, which showed specific expression patterns over time and were characterized by enrichment analysis. Specifically, the black and turquoise modules were mainly involved in energy metabolism and protein translation. The green yellow and yellow modules including Hmox1, Mif, Anxa2, Timp1, Gfap, Cd9, Gja1, Pdpn, and Gpx1 were related to response to wounding, indicating that expression of these genes such as Hmox1, Anxa2, and Timp1 could protect the brains from brain injury. The green yellow module highlighted genes involved in microglial cell activation such as Tyrobp, Cx3cr1, Grn, Trem2, C1qa, and Aif1, suggesting that these genes were responsible for the inflammatory response caused by TBI. The upregulation of these genes has been validated in an independent dataset. These results indicated that the key genes in microglia cell activation may serve as a promising therapeutic target for TBI. In summary, the present study provided a full view of the dynamic gene expression changes following TBI.
Huangqi-Honghua herb pair is known for its medicinal value to treat Qi deficiency and blood stasis syndrome with a long history in clinical practice. To understand its possible mechanism in a systematic study, a network pharmacological method was addressed.
Detailed information on the HH compounds was obtained from two public databases, and oral bioavailability (OB) and drug-like (DL) of the compounds were evaluated. A correlation between HH compounds, its potential targets, and known targets was extrapolated, and the herb-compound-target-disease (H-C-T-D) network was established. Next, the pathway enrichment and essential genes were analyzed. Then, three key genes (VEGFA, VEGFR2, and eNOS), highly associated with angiogenesis, were screened and verified through western blot assay.
Out of 276 compounds, 21 HH compounds and 78 target genes regulating the major pathways associated with CI in the network are analyzed. The bioactive compounds in HH were active in various signal transduction pathways such as the toll-like receptor signaling pathway, VEGF signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway are important pathways that may regulate anti-inflammatory, antiapoptotic, immune correlation, and antioxidative effects. The core genes are PTGS2, TNF, NOS2, IL6, BCL2, IL1B, SOD2, NOS3, SOD1, MMP9, and VEGFA. The in vitro results suggested that HH treatment could significantly elevate the expression of proangiogenic genes such as VEGFA, VEGFR2, and eNOS compared with OGD groups.
Our results predict that HH may regulate the expression of VEGFA, VEGFR2, and eNOS via the VEGF and HIF-1 signaling pathway to promote angiogenesis and alleviate cerebral ischemia injury.
Our results predict that HH may regulate the expression of VEGFA, VEGFR2, and eNOS via the VEGF and HIF-1 signaling pathway to promote angiogenesis and alleviate cerebral ischemia injury.Background and Objective. Epimedium koreanum Nakai is a medicinal plant known for its health beneficial effects on impotence, arrhythmia, oxidation, aging, osteoporosis, and cardiovascular diseases. However, there is no report available that shows its effects on platelet functions. Simufilam inhibitor Here, we elucidated antiplatelet and antithrombotic effects of ethyl acetate fraction of E. koreanum. Methodology. We analyzed the antiplatelet properties using standard in vitro and in vivo techniques, such as light transmission aggregometry, scanning electron microscopy, intracellular calcium mobilization measurement, dense granule secretion, and flow cytometry to assess integrin α IIb β 3 activation, clot retraction, and Western blot, on washed platelets. The antithrombotic effects of E. koreanum were assessed by arteriovenous- (AV-) shunt model in rats, and its effects on hemostasis were analyzed by tail bleeding assay in mice. Key Results. E. koreanum inhibited platelet aggregation in agonist-stimulated human and rat washed platelets, and it also reduced calcium mobilization, ATP secretion, and TXB2 formation. Fibrinogen binding, fibronectin adhesion, and clot retraction by attenuated integrin α IIb β 3-mediated inside-out and outside-in signaling were also decreased. Reduced phosphorylation of extracellular signal-regulated kinases (ERK), Akt, PLCγ2, and Src was observed. Moreover, the fraction inhibited thrombosis. HPLC results revealed that the fraction predominantly contained icariin. Conclusion and Implications. E. koreanum inhibited platelet aggregation and thrombus formation by attenuating calcium mobilization, ATP secretion, TXB2 formation, and integrin α IIb β 3 activation. Therefore, it may be considered as a potential candidate to treat and prevent platelet-related cardiovascular disorders.