-
Pruitt Godwin posted an update 2 days, 17 hours ago
Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.The development of effective treatment strategies has been hindered by the complex pathogenesis of ulcerative colitis (UC). UC patients treated with current therapeutic approaches experienced either treatment failure or suffered excessive adverse reactions. Overactivity of NLRP3 inflammasome enhances inflammation, resulting in aggravation of colonic damage. We were interested in exploring, for the first time, the potential coloprotective effect of dapagliflozin (DPZ) on acetic acid-induced UC in rats in comparison with 5-ASA. DPZ improved histologic and macroscopic features of colon tissues and prolonged survival of UC rats. DPZ also prevented colon shortening and declined disease activity. Additionally, DPZ lessened colon tissue neutrophil content and improved antioxidant defense machinery. Further, DPZ specifically declined the colonic inflammatory marker IL-6 and upregulated the anti-inflammatory cytokine IL-10. The pyroptosis process is constrained in consequence of the repressed caspase-1 activity and caspase-1-dependent release of the bioactive cytokines IL-1β and IL-18. These protective effects might be attributed to that DPZ on the one hand, prevented the priming step (signal 1) of NLRP3 inflammasome activation as revealed by modulating NFκB/AMPK interplay and on the other hand, inhibited the activation step (signal 2) as indicated by interrupting NLRP3/caspase-1 signaling. Since DPZ was found to be safe and well tolerated by healthy volunteers with no evidence of hypoglycemia, it might show promise in the future management of UC. However, further investigations are warranted to confirm the reversal of injury and that the coloprotective effect is substantial.DPM (diesel particulate matter) is ubiquitously present in the mining environment and is known for mutagenicity and carcinogenicity to humans. However, its health effects in surface coal mines are not well studied, particularly in India. In this study, DPM exposure and corresponding exposure biomarkers were investigated in four different surface coal mines in Central India. To document and evaluate the DPM exposure in surface coal miners, we characterized 1-NP (1-nitropyrene) in the mining environment as surrogate for DPM using Sioutas Cascade Impactor. Plerixafor Exposure biomarkers were analyzed by collecting post work shift (8-h work shift) urine samples and determining the concentrations of 1-aminopyrene (1-AP) as a metabolite of 1-NP and 8-hydroxydeoxyguanosine (8OHdG) as DNA damage marker. We observed high concentration of 1-NP (7.13-52.46 ng/m3) in all the mines compared with the earlier reported values. The average creatinine corrected 1-AP and 8OHdG levels ranged 0.07-0.43 [Formula see text]g/g and 32.47-64.16 [Formula see text]g/g, respectively, in different mines. We found 1-AP in majority of the mine workers’ urine (55.53%) and its level was higher than that reported for general environmental exposure in earlier studies. Thus, the study finding indicates occupational exposure to DPM in all the four mines. However, the association between 1-NP level and exposure biomarkers (1-AP and 8OHdG) was inconsistent, which may be due to individual physiological variations. The data on exposure levels in this study will help to understand the epidemiological risk assessment of DPM in surface coal miners. Further biomonitoring and cohort study are needed to exactly quantify the occupational health impacts caused by DPM among coal miners.Current methods to assess risk in infants exposed to maternal medication through breast milk do not specifically account for infants most vulnerable to high drug exposure. A workflow applied to lamotrigine incorporated variability in infant anatomy and physiology, milk intake volume, and milk concentration to predict infant exposure. An adult physiologically based pharmacokinetic model of lamotrigine was developed and evaluated. The model was scaled to account for growth and maturation of a virtual infant population (n=100). Daily infant doses were simulated using milk intake volume and concentration models described by a nonlinear equation of weight-normalized intake across infant age and a linear function on the relationship of observed milk concentrations and maternal doses, respectively. Average infant plasma concentration at steady state was obtained through simulation. Models were evaluated by comparing observed to simulated infant plasma concentrations from breastfeeding infants based on a 90% prediction interval (PI). Upper AUC ratio (UAR) was defined as a novel risk metric. Twenty-five paired (milk concentrations measured) and 18 unpaired (milk concentrations unknown) infant plasma samples were retrieved from the literature. Forty-four percent and 11% of the paired and unpaired infant plasma concentrations were outside of the 90% PI, respectively. Over all ages (0-7 months), unpaired predictions captured more observed infant plasma concentrations within 90% PI than paired. UAR was 0.18-0.44 when mothers received 200 mg lamotrigine, suggesting that infants can receive 18-44% of the exposure per dose as compared to adults. UARs determined for further medications could reveal trends to better classify at-risk mother-infant pairs.
Limb immobilization causes local vasculature to experience detrimental adaptations. Simple strategies to increase blood flow (heating, fidgeting) successfully prevent acute (≤ 1day) impairments; however, none have leveraged the hyperemic response over prolonged periods (weeks) mirroring injury rehabilitation. Throughout a 14-day unilateral limb immobilization, we sought to preserve vascular structure and responsiveness by repeatedly activating a reactive hyperemic response via blood flow restriction (BFR) and amplifying this stimulus by combining BFR with electric muscle stimulation (EMS).
Young healthy adults (MF = 1417, age = 22.4 ± 3.7years) were randomly assigned to control, BFR, or BFR + EMS groups. BFR and BFR + EMS groups were treated for 30min twice daily (3 × 10min ischemia-reperfusion cycles; 15% maximal voluntary contraction EMS), 5 days/week (20 total sessions). Before and after immobilization, artery diameter, flow-mediated dilation (FMD) and blood flow measures were collected in the superficial femoral artery (SFA).