-
Sanchez Floyd posted an update 1 day ago
s in these parameters may be useful to predict clinical outcomes.Ischemic mitral regurgitation is a valvular complication frequently seen in patients with coronary artery disease and associated with increased mortality and morbidity. Ischemic mitral regurgitation has a complex, heterogeneous and still incompletely understood pathophysiology involving both the mitral valve and the left ventricle. The occurrence of valve regurgitation in patients with ischemic cardiomyopathy will in return accelerate left ventricular remodeling and dysfunction, ultimately leading to irreversible heart failure. Diagnostic evaluation of ischemic mitral regurgitation is unique and different from the other causes of mitral regurgitation. The severity thresholds associated with outcomes are different from primary MR, and specific imaging characteristics are potentially useful to guide therapy. The use of imaging modalities such as 3D echocardiography and cardiac MRI can refine the diagnostic evaluation and help to choose the correct management. While multiple treatments are available to improve ihich case the term ischemic MR is used. Ischemic MR has a complex physiology involving both the LV and the mitral leaflets. Multiple characteristics are making the diagnostic evaluation and treatment of ischemic MR unique and distinct from the other causes of MR.Epileptogenesis, the gradual process that leads to epilepsy after brain injury or genetic mutations, is a complex network phenomenon, involving a variety of morphological, biochemical and functional brain alterations. Although risk factors for developing epilepsy are known, there is currently no treatment available to prevent epilepsy. We recently proposed a multitargeted, network-based approach to prevent epileptogenesis by rationally combining clinically available drugs and provided first proof-of-concept that this strategy is effective. Here we evaluated eight novel rationally chosen combinations of 14 drugs with mechanisms that target different epileptogenic processes. The combinations consisted of 2-4 different drugs per combination and were administered systemically over 5 days during the latent epileptogenic period in the intrahippocampal kainate mouse model of acquired temporal lobe epilepsy, starting 6 h after kainate. Doses and dosing intervals were based on previous pharmacokinetic and tolerability studies in mice. The incidence and frequency of spontaneous electrographic and electroclinical seizures were recorded by continuous (24/7) video linked EEG monitoring done for seven days at 4 and 12 weeks post-kainate, i.e., long after termination of drug treatment. Compared to vehicle controls, the most effective drug combination consisted of low doses of levetiracetam, atorvastatin and ceftriaxone, which markedly reduced the incidence of electrographic seizures (by 60%; p less then 0.05) and electroclinical seizures (by 100%; p less then 0.05) recorded at 12 weeks after kainate. This effect was lost when higher doses of the three drugs were administered, indicating a synergistic drug-drug interaction at the low doses. The potential mechanisms underlying this interaction are discussed. Remodelin mw We have discovered a promising novel multitargeted combination treatment for modifying the development of acquired epilepsy.Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer’s disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies, including dementia with Lewy bodies (DLB) is unclear. To assess this, we used two murine models of DLB that express either human mutant α-synuclein (α-syn) the hA30P, or human wild-type α-syn (hWT-α-syn) mice. We observed network hyperexcitability in vitro in young (2-5 months), pre-symptomatic transgenic α-syn mice. Interictal discharges (IIDs) were seen in the extracellular local field potential (LFP) in the hippocampus in hA30P and hWT-α-syn mice following kainate application, while only gamma frequency oscillations occurred in control mice. In addition, the concentration of the GABAA receptor antagonist (gabazine) needed to evoke IIDs was lower in slices from hA30P mice compared to control mice. hA30P mice also showed increased locomotor activity in the open field test compared to control mice. Intracellular recordings from CA3 pyramidal cells showed a more depolarised resting membrane potential in hA30P mice. Quadruple immunohistochemistry for human α-syn, and the mitochondrial markers, porin and the complex IV enzyme cytochrome c oxidase subunit 1 (COX1) in parvalbumin (PV+)-expressing interneurons showed that 25% of PV+ cells contained human α-syn in hA30P mice. While there was no change in PV expression, COX1 expression was significantly increased in PV+ cells in hA30P mice, perhaps reflecting a compensatory change to support PV+ interneuron activity. Our findings suggest that hippocampal network hyperexcitability may be an important early consequence of α-syn-mediated impairment of neuronal/synaptic function, which occurs without any overt loss of PV interneurons. The therapeutic benefit of targeting network excitability early in the disease stage should be explored with respect to α-synucleinopathies such as DLB.Neurodegenerative disorders such as Alzheimer’s disease (AD), Lewy body diseases (LBD), and the amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) spectrum are defined by the accumulation of specific misfolded protein aggregates. However, the mechanisms by which each proteinopathy leads to neurodegeneration remain elusive. We hypothesized that there is a common “pan-neurodegenerative” gene expression signature driving pathophysiology across these clinically and pathologically diverse proteinopathies. To test this hypothesis, we performed a systematic review of human CNS transcriptomics datasets from AD, LBD, and ALS-FTD patients and age-matched controls in the Gene Expression Omnibus (GEO) and ArrayExpress databases, followed by consistent processing of each dataset, meta-analysis, pathway enrichment, and overlap analyses. After applying pre-specified eligibility criteria and stringent data pre-processing, a total of 2600 samples from 26 AD, 21 LBD, and 13 ALS-FTD datasets were included in the meta-analysis.