• Rojas Brinch posted an update 3 days, 23 hours ago

    aring the effects of these low-cost robots with other robotic pets.

    Overall, the findings resonate with previous studies that investigated the effectiveness of other social robots, demonstrating the promise of these low-cost robotic pets in addressing the psychosocial needs of older adults and people with dementia. The affordability of these robotic pets appeared to influence the practicalities of real-world use, such as intervention delivery and infection control, which are especially relevant in light of COVID-19. Moving forward, studies should also consider comparing the effects of these low-cost robots with other robotic pets.

    Previous studies on the impact of social distancing on COVID-19 mortality in the United States have predominantly examined this relationship at the national level and have not separated COVID-19 deaths in nursing homes from total COVID-19 deaths. This approach may obscure differences in social distancing behaviors by county in addition to the actual effectiveness of social distancing in preventing COVID-19 deaths.

    This study aimed to determine the influence of county-level social distancing behavior on COVID-19 mortality (deaths per 100,000 people) across US counties over the period of the implementation of stay-at-home orders in most US states (March-May 2020).

    Using social distancing data from tracked mobile phones in all US counties, we estimated the relationship between social distancing (average proportion of mobile phone usage outside of home between March and May 2020) and COVID-19 mortality (when the state in which the county is located reported its first confirmed case of COVID-19 and up to May001).

    As stay-at-home orders have been lifted in many US states, continued adherence to other social distancing measures, such as avoiding large gatherings and maintaining physical distance in public, are key to preventing additional COVID-19 deaths in counties across the country.

    As stay-at-home orders have been lifted in many US states, continued adherence to other social distancing measures, such as avoiding large gatherings and maintaining physical distance in public, are key to preventing additional COVID-19 deaths in counties across the country.This paper presents an approach for pulse rate extraction from videos. The core of the presented approach is a novel method to segment and track a suitable region of interest (ROI). The proposed method combines level sets with subject-individual Gaussian Mixture Models to yield a time varying ROI. The ROI builds up from multiple homogeneous skin areas under constraints regarding the area and contour length of the ROI. Adavosertib Together with state of the art signal processing methods our approach yields an Mean Average Error (MAE) of 2.3 bpm, 1.4 bpm and 2.7 bpm on own data, the PURE database and the UBFC-rPPG database, respectively. Therewith, our method performs equal or better compared to widely used approaches (e.g. the KLT tracker instead of the proposed image processing yields an MAE of 2.6 bpm, 2.6 bpm and 4.4 bpm). Such results and the 2nd place with a MAE of 7.92 bpm in the 1st Challenge on Remote Physiological Signal Sensing prove the applicability of the proposed method. The taken approach, however, bears further potential for optimization in the context of photoplethysmography imaging and should be transferable to other segmentation tasks as well.The objective is to develop a cuffless method that accurately estimates blood pressure (BP) during activities of daily living. User-specific nonlinear autoregressive models with exogenous inputs (NARX) are implemented using artificial neural networks to estimate the BP waveforms from electrocardiography and photoplethysmography signals. To broaden the range of BP in the training data, subjects followed a short procedure consisting of sitting, standing, walking, Valsalva maneuvers, and static handgrip exercises. The procedure was performed before and after a six-hour testing phase wherein five participants went about their normal daily living activities. Data were further collected at a four-month time point for two participants and again at six months for one of the two. The performance of three different NARX models was compared with three pulse arrival time (PAT) models. The NARX models demonstrate superior accuracy and correlation with ground truth systolic and diastolic BP measures compared to the PAT models and a clear advantage in estimating the large range of BP. Preliminary results show that the NARX models can accurately estimate BP even months apart from the training. Preliminary testing suggests that it is robust against variabilities due to sensor placement. This establishes a method for cuffless BP estimation during activities of daily living that can be used for continuous monitoring and acute hypotension and hypertension detection.Orthognathic surgical outcomes rely heavily on the quality of surgical planning. Automatic estimation of a reference facial bone shape significantly reduces experience-dependent variability and improves planning accuracy and efficiency. We propose an end-to-end deep learning framework to estimate patient-specific reference bony shape models for patients with orthognathic deformities. Specifically, we apply a point-cloud network to learn a vertex-wise deformation field from a patients deformed bony shape, represented as a point cloud. The estimated deformation field is then used to correct the deformed bony shape to output a patient-specific reference bony surface model. To train our network effectively, we introduce a simulation strategy to synthesize deformed bones from any given normal bone, producing a relatively large and diverse dataset of shapes for training. Our method was evaluated using both synthetic and real patient data. Experimental results show that our framework estimates realistic reference bony shape models for patients with varying deformities. The performance of our method is consistently better than an existing method and several deep point-cloud networks. Our end-to-end estimation framework based on geometric deep learning shows great potential for improving clinical workflows.