-
Oh Whitney posted an update 2 days, 23 hours ago
The fabricated HSC delivered an areal capacitance of 287 mF cm-2 with high areal energy density (67 µWh cm-2) and power density (16.25 mW cm-2). read more The combination of battery type CNT/ZnO/NiO HNCs/NF and EDLC type CNT/NF helped in holding the capacity for a long period of time. Thus, the systematic assembly of CNTs and ZnO along with the NiO decoration enlarges the application window with its high rate electrochemical properties.Methylation of DNA at carbon 5 of cytosines is the most common epigenetic modification of human genome. Due to its critical role in many normal cell processes such as growth and development, any aberrant methylation pattern in a particular locus may lead to abnormal functions and diseases such as cancer. Development of methods to detect methylation state of DNA which may eliminate labor-intensive chemical or enzymatic treatments has received considerable attention in recent years. Herein, we report a DNA methylation detection procedure based on fluorescence turn-on strategy. Target sequence was selected from Sept9 promoter region that has been reported as one of the most frequently methylated sites in colorectal cancer. Probe DNA was designed to be complementary to this sequence with an additional six cytosines in the middle to form an internal loop to host silver nanoclusters. The fluorescence intensity of the synthesized silver nanoclusters with the duplexes of probe-non-methylated target was significantly different from that of probe-methylated target. The fluorescence enhanced with increasing the methylated DNA concentration with a linear relation in the range of 1.0 × 10-8 M to 5.0 × 10-7 M with the detection limit of 8.2 × 10-9 M, and quenched with non-methylated ones. The method was very specific in the presence of non-complementary sequences with maximum similarity of 40%. Circular dichroism spectra indicated that silver ions significantly affected the structure of methylated and non-methylated DNA into different extents which could further influence the nanocluster fluorescence. Finally, a method was introduced to meet the concerns in the applicability of the proposed method in real situation.In the present study, a rapid, facile, and highly sensitive assay based on glutathione conjugated gold nanocluster (GSH-AuNCs) is developed for the detection of melanin. The analysis of melanin which is linked to several diseases is crucial. The current methods for melanin estimation are complex and long, thus demands an alternative technology. In general, melanin exhibits photoactive properties, thus, it might have fluorescence quenching properties through the phenomenon of fluorescence resonance energy transfer. To verify our assumption, we have developed the fluorescence quenching assay based on gold nanocluster and melanin interaction. As a result, under the optimized condition, the developed quenching assay demonstrated the high selectivity and sensitivity toward melanin with a limit of detection and correlation coefficient of 0.060 μg/mL and 0.993, respectively. Moreover, the whole process represented the rapid assay time of 30 min to complete. To validate the performance of our assay on real samples, B16F1 cells lysate, and hair samples were tested that provided satisfactory results. Therefore, we believe that our assay due to good sensitivity and short assay time could be beneficial for the clinical diagnosis of melanin in the future study.A unique reaction between thiols (RSH) and alkyl sulfonylbenzothiazole was discovered. This reaction was specific for thiols and produced a sulfinic acid (RSO2H) as the intermediate, which further triggered an intramolecular cyclization to release a -OH containing payload. This reaction was used to develop thiol-triggered fluorescent sensors and prodrugs. The modular design of this template provides tunability of the release profiles of the payloads.Herein, a luminescent water-stable terbium-based metal-organic framework (MOF) [Tb(Cmdcp)(H2O)3]2(NO3)2·5H2On (1, H3CmdcpBr = N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide) has been synthesized and used for the recyclable sensing of PO43- and Al3+ in tandem. MOF 1 acts as a fluorescent sensor for PO43- by the luminescence “turn-off” mechanism with high selectivity over other anions, such as F-, Cl-, Br-, I-, NO3-, H2PO4-, HSO4-, HCO3-, HSO3-, SO42-, CO32- and HPO42-. The formed PO43-@1 complex further acts as the Al3+ sensor with the luminescence “turn-on” mechanism, also with high selectivity over diverse inorganic cations of Fe2+, Mn2+, Co2+, Ni2+, Hg2+, Na+, K+, Li+, Ag+, Mg2+, Ca2+, Cd2+, Pb2+, Cu2+, and Zn2+. The detection process for both PO43- and Al3+ can be directly observed with naked eyes under the UV light at 365 nm. The detection limits for PO43- and Al3+ are 1.1 μM and 6.6 μM, respectively. Such a sensing cycle is further transferable to urine and serum samples with a satisfactory near-quantitative recovery, highlighting its good potential in biologically relevant applications.Sirtuin-3 (SIRT3) is a NAD+-dependent protein deacetylase that is located in mitochondria, regulating mitochondrial proteins and maintaining cellular antioxidant status. Increasing evidence demonstrates that SIRT3 plays a role in degenerative disorders including Parkinson’s disease (PD), which is a devastating nervous system disease currently with no effective treatments available. Although the etiology of PD is still largely ambiguous, substantial evidence indicates that mitochondrial dysfunction and oxidative stress play major roles in the pathogenesis of PD. The imbalance of reactive oxygen species (ROS) production and detoxification leads to oxidative stress that can accelerate the progression of PD. By causing conformational changes in the deacetylated proteins SIRT3 modulates the activities and biological functions of a variety of proteins involved in mitochondrial antioxidant defense and various mitochondrial functions. Increasingly more studies have suggested that upregulation of SIRT3 confers beneficial effect on neuroprotection in various PD models. This review discusses the mechanism by which SIRT3 regulates intracellular oxidative status and mitochondrial function with an emphasis in discussing in detail the regulation of SIRT3 on each component of the five complexes of the mitochondrial respiratory chain and mitochondrial antioxidant defense, as well as the pharmacological regulation of SIRT3 in light of therapeutic strategies for PD.