• Parks Klinge posted an update 5 days, 20 hours ago

    Female genital mutilation/cutting (FGM/C) is a harmful traditional practice affecting the health and rights of women and girls. This has raised global attention on the implementation of strategies to eliminate the practice in conformity with the Sustainable Development Goals (SDGs). A recent study on the trends of FGM/C among Senegalese women (aged 15-49) which examined how individual- and community-level factors affected the practice, found significant regional variations in the practice. However, the dynamics of the practice among girls (0-14 years old) is not fully understood. This paper attempts to fill this knowledge gap by investigating normative influences in the persistence of the practice among Senegalese girls, identify and map ‘hotspots’.

    We do so by using a class of Bayesian hierarchical geospatial modelling approach implemented in R statistical software (R Foundation for Statistical Computing, Vienna, Austria) using R2BayesX package. We employed Markov Chain Monte Carlo (MCMC) techniques for full Bayesian inference, while model fit and complexity assessment utilised deviance information criterion (DIC).

    We found that a girl’s probability of cutting was higher if her mother was cut, supported FGM/C continuation or believed that the practice was a religious obligation. In addition, living in rural areas and being born to a mother from Diola, Mandingue, Soninke or Poular ethnic group increased a girl’s likelihood of being cut. The hotspots identified included Matam, Tambacounda and Kolda regions.

    Our findings offer a clearer picture of the dynamics of FGM/C practice among Senegalese girls and prove useful in informing evidence-based intervention policies designed to achieve the abandonment of the practice in Senegal.

    Our findings offer a clearer picture of the dynamics of FGM/C practice among Senegalese girls and prove useful in informing evidence-based intervention policies designed to achieve the abandonment of the practice in Senegal.As human life expectancy is rising, the incidence of age-associated diseases will also increase. Scientific evidence has revealed that healthy diets, including good fats, vitamins, minerals, or polyphenolics, could have antioxidant and anti-inflammatory activities, with antiaging effects. Recent studies demonstrated that vitamin K is a vital cofactor in activating several proteins, which act against age-related syndromes. Thus, vitamin K can carboxylate osteocalcin (a protein capable of transporting and fixing calcium in bone), activate matrix Gla protein (an inhibitor of vascular calcification and cardiovascular events) and carboxylate Gas6 protein (involved in brain physiology and a cognitive decline and neurodegenerative disease inhibitor). By improving insulin sensitivity, vitamin K lowers diabetes risk. learn more It also exerts antiproliferative, proapoptotic, autophagic effects and has been associated with a reduced risk of cancer. Recent research shows that protein S, another vitamin K-dependent protein, can prevent the cytokine storm observed in COVID-19 cases. The reduced activation of protein S due to the pneumonia-induced vitamin K depletion was correlated with higher thrombogenicity and possibly fatal outcomes in COVID-19 patients. Our review aimed to present the latest scientific evidence about vitamin K and its role in preventing age-associated diseases and/or improving the effectiveness of medical treatments in mature adults ˃50 years old.Brassicaceae seed meal (SM) soil amendment has been utilized as an effective strategy to control the biological complex of organisms, which includes oomycetes, fungi, and parasitic nematodes, that incites the phenomenon termed apple replant disease. Soil-borne disease control attained in response to Brassicaceae SM amendment is reliant on multiple chemical and biological attributes, including specific SM-generated modifications to the soil/rhizosphere microbiome. In this study, we conducted a comparative analyses of apple root gene expression as influenced by rootstock genotype combined with a seed meal (SM) soil amendment. Apple replant disease (ARD) susceptible (M.26) and tolerant (G.210) rootstocks cultivated in SM-amended soil exhibited differential gene expression relative to corresponding non-treated control (NTC) orchard soil. The temporal dynamics of gene expression indicated that the SM-amended soil system altered the trajectory of the root transcriptome in a genotype-specific manner. In both genotypes, the expression of genes related to plant defense and hormone signaling were altered in SM-amended soil, suggesting SM-responsive phytohormone regulation. Altered gene expression was temporally associated with changes in rhizosphere microbiome density and composition in the SM-treated soil. Gene expression analysis across the two rootstocks cultivated in the pathogen-infested NTC soil showed genotype-specific responses indicative of different defensive strategies. These results are consistent with previously described resistance mechanisms of ARD “tolerant” rootstock cultivars and also add to our understanding of the multiple mechanisms by which SM soil amendment and the resulting rhizosphere microbiome affect apple rootstock physiology. Future studies which assess transcriptomic and metagenomic data in parallel will be important for illuminating important connections between specific rhizosphere microbiota, gene-regulation, and plant health.Periodontitis is a set of chronic inflammatory diseases caused by the accumulation of Gram-negative bacteria on teeth, resulting in gingivitis, pocket formation, alveolar bone loss, tissue destruction, and tooth loss. In this study, the contents of ginsenosides isolated from Panax ginseng fruit extract were quantitatively analyzed, and the anti-inflammatory effects were evaluated in human periodontal ligament cells. The major ginsenosides, Re, Ra8, and Rf, present in ginseng fruit were simultaneously analyzed by a validated method using high-performance liquid chromatography with a diode-array detector; Re, Ra8, and Rf content per 1 g of P. ginseng fruit extract was 1.01 ± 0.03, 0.33 ± 0.01, and 0.55 ± 0.04 mg, respectively. Ginsenosides-Re, -Ra8, and -Rf inhibited the production of pro-inflammatory factors and the expression of important cytokines in periodontitis by inducing the expression of heme oxygenase 1 (HO-1), promoting osteoblast differentiation of periodontal ligament cells, suppressing alveolar bone loss, and promoting the expression of osteoblast-specific genes, such as alp, opn, and runx2.