• Houmann Pridgen posted an update 3 days, 20 hours ago

    Chronic heavy alcohol use is often associated with reduced bone mineral density and altered bone turnover. However, the dose response effects of ethanol on bone turnover have not been established. This study examined the effects of graded increases of ethanol consumption on biochemical markers of bone turnover in young adult male cynomolgus macaques (Macaca fascicularis). For this study, 6.6-year-old (95% CI 6.5, 6.7) male macaques were subjected to three 30-day sessions of increased ethanol intake over a 90-day interval. During the first 30 days, the monkeys drank a predetermined volume of ethanol corresponding to 0.5 g/kg/day, followed by 1.0 g/kg/day and 1.5 g/kg/day. Osteocalcin, a marker of bone formation, and carboxyterminal cross-linking telopeptide of type 1 collagen (CTX), a marker of resorption, were measured during each 30-day session. In addition, the ratio of osteocalcin to CTX was determined as a surrogate measure of global turnover balance. Mean osteocalcin decreased by 2.6 ng/mL (1.8, 3.5) for each one-half unit (0.5 g/kg/day) increase in dose (p less then 0.001). Mean CTX decreased by 0.13 ng/mL (0.06, 0.20) for each one-half unit increase in dose (p less then 0.001). Furthermore, there was an inverse relationship between dose and the ratio of osteocalcin to CTX, such that the mean ratio decreased by 0.9 (0.3, 1.5) for each one-half unit increase in dose (p = 0.01). In summary, male cynomolgus macaques had decreased blood osteocalcin and CTX, and osteocalcin to CTX ratio during the 90-day interval of graded increases in ethanol consumption, indicative of reduced bone turnover and negative turnover balance, respectively. These findings suggest that over the range ingested, ethanol resulted in a linear decrease in bone turnover. Furthermore, the negative bone turnover balance observed is consistent with reported effects of chronic alcohol intake on the skeleton.Adverse childhood experiences (ACEs), such as maltreatment and severe household dysfunction, represent a significant threat to public health as ACEs are associated with increased prevalence of several chronic diseases. Biological embedding, believed to be rooted in dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, is the prevailing theory by which chronic diseases become imprinted in individuals following childhood adversity. A shift towards HPA axis hypoactivity occurs in response to ACEs exposure and is proposed to contribute towards altered cortisol secretion, chronic low-grade inflammation, and dysregulated hemodynamic and autonomic function. This shift in HPA axis activity may be a long-term effect of glucocorticoid receptor methylation with downstream effects on hemodynamic and autonomic function. Emerging evidence suggests syncopal tendencies are increased among those with ACEs and coincides with altered neuroimmune function. Similarly, chronic low-grade inflammation may contribute towards y.The inflammatory response following spinal cord injury is associated with increased tissue damage and impaired functional recovery. However, inflammation can also promote plasticity and the secretion of growth-promoting substances. Previously we have shown that inducing inflammation with a systemic injection of lipopolysaccharide in the chronic (8 weeks) stage of spinal cord injury enhances neuronal sprouting and the efficacy of rehabilitative training in rats. Here, we tested whether administration of lipopolysaccharide in female rats in the subacute (10 days) stage of spinal cord injury would have a similar effect. Since the lesioned environment is already in a pro-inflammatory state at this earlier time after injury, we hypothesized that triggering a second immune response may not be beneficial for recovery. Contrary to our hypothesis, we found that eliciting an inflammatory response 10 days after spinal cord injury enhanced the recovery of the ipsilesional forelimb in rehabilitative training. Compared to rats that received rehabilitative training without treatment, rats that received systemic lipopolysaccharide showed restored motor function without the use of compensatory strategies that translated beyond the trained task. Furthermore, lipopolysaccharide treatment paradoxically promoted the resolution of chronic neuroinflammation around the lesion site. Unfortunately, re-triggering a systemic immune response after spinal cord injury also resulted in a long-term increase in anxiety-like behaviour.Adolescence is a critical period for brain development and adequate sleep during this period is essential for physical function and mental health. Emerging evidence has detailed the neurological impacts of sleep insufficiency on adolescents, as was unveiled by our previous study, microglia, one of the crucial contributors to synaptic pruning, is functionally disrupted by lack of sleep. Here, we provided evidence featuring the protective effect and the underlying mechanisms of voluntary exercise (VE) on microglial functions in an adolescent 72 h sleep deprivation (SD) model. We identified that the aberrant hippocampal neuronal activity and impaired short-term memory performance in sleep-deprived mice were prevented by 11 days of VE. VE significantly normalized the SD-induced dendritic spine increment and maintained the microglial phagocytic ability in sleep-deprived mice. read more Moreover, we found that the amendment of the noradrenergic signal in the central nervous system may explain the preventative effects of VE on the abnormalities of microglial and neuronal functions caused by SD. These data suggested that VE may confer protection to the microglia-mediated synaptic pruning in the sleep-deprived adolescent brains. Therefore, physical exercise could be a beneficial health practice for the adolescents that copes the adverse influence of inevitable sleep insufficiency.

    Stress during pregnancy and maternal inflammation are two common prenatal factors that impact offspring development. Asthma is the leading chronic condition complicating pregnancy and a common source of prenatal stress and inflammation.

    The goal of this study was to characterize the developmental impact of repeated allergic asthma inflammation during pregnancy on offspring behavioral outcomes and brain inflammation.

    Pregnant female C57BL/6 mice were sensitized with ovalbumin (OVA) or PBS vehicle control and then randomly assigned to receive daily aerosol exposures to the same OVA or PBS treatment during early, gestational days (GD) 2-GD9, or late pregnancy, GD10-GD17. Maternal sera were collected after the first and last aerosol induction regimen and measured for concentrations of corticosterone, anti-OVA IgE, and cytokine profiles. Juvenile male and female offspring were assessed for locomotor and social behaviors and later as adults assessed for anxiety-like, and marble burying behaviors using a series of behavioral tasks.