-
Horne Bunn posted an update 1 day, 1 hour ago
The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%- 400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism, and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events. The American Society for Pharmacology and Experimental Therapeutics.Peptidyl arginine deiminase 4 (PAD4/PADI4) is a posttranslational modification enzyme that converts protein arginine or mono-methylarginine to citrulline. The PAD4-mediated hypercitrullination reaction in neutrophils causes the release of nuclear chromatin to form a chromatin network termed neutrophil extracellular traps (NET). NETs were first described as antimicrobial fibers that bind and kill bacteria. However, it is not known whether PAD4 can mediate the release of chromatin DNA into the extracellular space of cancer cells. Here, we report that murine breast cancer 4T1 cells expressing high levels of PADI4 can release cancer extracellular chromatin networks (CECN) in vitro and in vivo. Deletion of Padi4 using CRISPR/Cas9 abolished CECN formation in 4T1 cells. Padi4 deletion from 4T1 cells also reduced the rate of tumor growth in an allograft model, and decreased lung metastasis by 4T1 breast cancers. DNase I treatment, which degrades extracellular DNA including CECNs, also reduced breast to lung metastasis of Padi4 wild-type 4T1 cells in allograft experiments in the Padi4-knockout mice. We further demonstrated that DNase I treatment in this mouse model did not alter circulating tumor cells but decreased metastasis through steps after intravasation. Taken together, our genetic studies show that PAD4 plays a cell autonomous role in cancer metastasis, thus revealing a novel strategy for preventing cancer metastasis by inhibiting cancer cell endogenous PAD4. IMPLICATIONS This study shows that PADI4 can mediate the formation of CECNs in 4T1 cells, and that endogenous PADI4 plays an essential role in breast cancer lung metastasis. VISUAL OVERVIEW http//mcr.aacrjournals.org/content/molcanres/00/00/0000/F1.large.jpg. ©2020 American Association for Cancer Research.Autophagy captures intracellular components and delivers them to lysosomes for degradation and recycling. Conditional autophagy deficiency in adult mice causes liver damage, shortens life span to 3 mo due to neurodegeneration, and is lethal upon fasting. As autophagy deficiency causes p53 induction and cell death in neurons, we sought to test whether p53 mediates the lethal consequences of autophagy deficiency. Here, we conditionally deleted Trp53 (p53 hereafter) and/or the essential autophagy gene Atg7 throughout adult mice. Compared with Atg7 Δ/Δ mice, the life span of Atg7 Δ/Δ p53 Δ/Δ mice was extended due to delayed neurodegeneration and resistance to death upon fasting. Atg7 also suppressed apoptosis induced by p53 activator Nutlin-3, suggesting that autophagy inhibited p53 activation. To test whether increased oxidative stress in Atg7 Δ/Δ mice was responsible for p53 activation, Atg7 was deleted in the presence or absence of the master regulator of antioxidant defense nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2-/-Atg7 Δ/Δ mice died rapidly due to small intestine damage, which was not rescued by p53 codeletion. Thus, Atg7 limits p53 activation and p53-mediated neurodegeneration. Selleck Cilengitide In turn, NRF2 mitigates lethal intestine degeneration upon autophagy loss. These findings illustrate the tissue-specific roles for autophagy and functional dependencies on the p53 and NRF2 stress response mechanisms. © 2020 Yang et al.; Published by Cold Spring Harbor Laboratory Press.The Saccharomyces cerevisiae protein Ddi1 and its homologs in higher eukaryotes have been proposed to serve as shuttling factors that deliver ubiquitinated substrates to the proteasome. Although Ddi1 contains both ubiquitin-interacting UBA and proteasome-interacting UBL domains, the UBL domain is atypical, as it binds ubiquitin. Furthermore, unlike other shuttling factors, Ddi1 and its homologs contain a conserved helical domain (helical domain of Ddi1, HDD) and a retroviral-like protease (RVP) domain. The RVP domain is probably responsible for cleavage of the precursor of the transcription factor Nrf1 in higher eukaryotes, which results in the up-regulation of proteasomal subunit genes. However, enzymatic activity of the RVP domain has not yet been demonstrated, and the function of Ddi1 remains poorly understood. Here, we show that Ddi1 is a ubiquitin-dependent protease, which cleaves substrate proteins only when they are tagged with long ubiquitin chains (longer than about eight ubiquitins). The RVP domain is inactive in isolation, in contrast to its retroviral counterpart. Proteolytic activity of Ddi1 requires the HDD domain and is stimulated by the UBL domain, which mediates high-affinity interaction with the polyubiquitin chain. Compromising the activity of Ddi1 in yeast cells results in the accumulation of polyubiquitinated proteins. Aside from the proteasome, Ddi1 is the only known endoprotease that acts on polyubiquitinated substrates. Ddi1 and its homologs likely cleave polyubiquitinated substrates under conditions where proteasome function is compromised. Copyright © 2020 the Author(s). Published by PNAS.During development, organisms acquire three-dimensional (3D) shapes with important physiological consequences. While basic mechanisms underlying morphogenesis are known in eukaryotes, it is often difficult to manipulate them in vivo. To circumvent this issue, here we present a study of developing Vibrio cholerae biofilms grown on agar substrates in which the spatiotemporal morphological patterns were altered by varying the agar concentration. Expanding biofilms are initially flat but later undergo a mechanical instability and become wrinkled. To gain mechanistic insights into this dynamic pattern-formation process, we developed a model that considers diffusion of nutrients and their uptake by bacteria, bacterial growth/biofilm matrix production, mechanical deformation of both the biofilm and the substrate, and the friction between them. Our model shows quantitative agreement with experimental measurements of biofilm expansion dynamics, and it accurately predicts two distinct spatiotemporal patterns observed in the experiments-the wrinkles initially appear either in the peripheral region and propagate inward (soft substrate/low friction) or in the central region and propagate outward (stiff substrate/high friction).